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Outline

● Recent work on the RLA

● Tracking in linear non-scaling FFAGs

● Electron model for linear non-scaling FFAG (EMMA)

● Analysis of an isochronous FFAG

● Analysis of a scaling FFAG scheme
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The Study IIa Scheme
Linac

10–20 GeV FFAG

5–10 GeV FFAG

1.5–5 GeV Dogbon e RLA
Lina c to 1.5 GeV
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The Study IIa Scheme
Dogbone RLA
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Dogbone RLA

● Full linear design exists
◆ Needs to be converted into real terms, costed
◆ Compare cost per GeV to FFAGs

● Misalignment and gradient error sensitivity studied
◆ Orbit distortion manageable with 1 mm magnet displacements
◆ Quad field tolerances 0.2%

● Next steps
◆ Add sextupoles to get chromatics right
◆ Look at beam with finite energy spread
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The Study IIa Scheme
5–10 GeV FFAG

10–20 GeV FFAG

5–10 GeV FFAG

1.5–5 GeV Dogbon e RLA
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The Study IIa Scheme
10–20 GeV FFAG
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Tracking in Linear Non-Scaling FFAGs

● 6-D tracking studies have begun on linear non-scaling FFAGs.
Most codes can’t handle FFAGs well.
◆ Most of this done by European collaborators (Machida, Méot,

Lemuet)
● With real acceleration, particles with high transverse amplitude

aren’t accelerated properly
◆ Not a problem with uniform acceleration (what we tested before)
◆ Low transverse amplitudes are fine

● Cause: time of flight depends on amplitude
◆ Can predict the dependence:

dT

dJ
= −2πp

dν

dE
◆ No effect in scaling FFAGs!
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Time of Flight Dependence on Amplitude
Different Transverse Amplitudes
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Time of Flight Dependence on Amplitude
Time of Flight Curves
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Tracking in Linear Non-Scaling FFAGs
Time of Flight Dependence on Amplitude

● How will we address the problem?
◆ Adjust machine parameters to open up the channel more

★ More voltage
★ Longer ring
★ Higher harmonic RF
★ Costs money

◆ Adjust phase space more carefully to optimize what we have
★ Current model assumes that time of flight is perfectly parabolic
★ Find best area of overlap (right now, using optimum for low

amplitude)
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FFAG Electron Model

● Linear non-scaling FFAGs have never been built

● Create an inexpensive model of a linear-nonscaling FFAG

● In the last year we have
◆ Refined the experimental goals of the machine
◆ Settled on lattice specifications
◆ Begun to look at hardware
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FFAG Electron Model
Basic Experimental Goals

● Study the unique longitudinal dynamics in fixed-frequency linear
nonscaling FFAGs

● Study rapid crossing of many weak resonances that occurs in
linear nonscaling FFAGs

● Study the effect of errors on the performance of linear nonscaling
FFAGs

● Vary machine parameters over a significant range to study these
effects as a function of machine parameters
◆ RF frequency (part in 103)
◆ Magnet gradient (±25%) and dipole field (±50%)
◆ Magnet displacement and gradient errors

● Compare results to simulation
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FFAG Electron Model
Lattice Specification

● We have a well-defined baseline lattice

● 42 cell lattice, approximately 16 m circumference

● Accelerating in 14 turns or less

● Magnets with approximately 0.2 T pole tip fields
◆ Gradient dipole
◆ Shifted quadrupoles
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Acceleration Schemes
Isochronous FFAGs (Rees)

● Replace the FFAGs in the NFMCC scheme with “isochronous
FFAGs”

● Linear non-scaling FFAGs have a time of flight that depends on
energy
◆ Difficult to keep bunch synchronized with the RF
◆ Puts a lower limit on the required voltage
◆ Leads to above described problems

● Use nonlinear magnets to make the FFAG isochronous over the
entire energy range
◆ Original idea from Rees (RAL)

● Can also use two types of cells: longer cells with RF, shorter cells
without (UK baseline)
◆ Can reduce machine cost
◆ Need to match between: challenge
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Isochronous FFAGs with Insertions

Shorter Cells
No Cavities

Longer Cells
With Cavities
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Isochronous FFAG: Analysis

● Time of flight variation is exceptionally small
◆ Factor of 10 below natural value

● In my computation, vertical tunes go unstable at high energy
◆ Possible cause: Rees uses second-order edge effect which I

don’t
● Tracking results (Méot/Lemuet)

◆ Beam loss at high energy end
◆ Appears to come from hitting a resonance

★ Note it occurs about where I say the lattice goes unstable
◆ Highly nonlinear fields at high energy could also be driving it

into the resonance
● Not performing acceptably at this point

◆ Work has not been put into improving it as yet
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Isochronous FFAG
Beam Loss
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Isochronous FFAGs
Fields
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Acceleration Schemes
Scaling FFAGs

● The NuFactJ scheme (KEK, Japan)
● Scaling FFAGs only for entire neutrino factory, from capture to (not

including) storage ring
● 4 stages, 0.3–1 GeV/c, 1–3 GeV/c, 3–10 GeV/c, 10–20 GeV/c
● Idea: this may be inexpensive

◆ Avoids the entire front end
● Scaling FFAGs can have large dynamic aperture

◆ Arbitrarily large energy acceptance
◆ No resonance crossing issues
◆ Will it be large enough? Nonlinearities.

● Use low-frequency RF to accelerate
◆ Lots of voltage needed at low frequency
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Scaling FFAGs
FFAGs on Tokai Campus
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Scaling FFAG Scenario

● Lattices presented in the NuFactJ report were to give the idea
◆ I attempted to replicate the NuFactJ lattices
◆ Lattices were not even stable
◆ They were constructed out of standard sector magnets, not

FFAG magnets
● I produced a set of lattices

◆ Used true FFAG magnets
◆ Matched the tunes in the NuFactJ report

● Result had large costs
◆ 10–20 GeV was 83% of the entire Study IIa cost, compared with

5% for linear non-scaling FFAG
◆ Reason: large apertures (35–45 cm), high fields (up to 9.4 T)
◆ Lower energy lattices should have come out normal conducting

(didn’t)
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My Versions of NuFactJ Lattices
Magnet Parameters and Cost

● Further optimization improved 10–20 GeV lattice
◆ 2002 lattices from LBNL FFAG Workshop: 18% of the entire

Study IIa cost, lower due to smaller apertures and fields

● Note: no cavities in cost!
◆ RF systems used

★ 0.75 MV/m average over ring, air gap, 5–10 MHz
★ First ring may be variable frequency

➣ New type of magnetic alloy core
★ All this needs more careful specification, R&D, costing
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Conclusions

● We have an RLA lattice up to 5 GeV, and analysis is proceeding.

● We are trying to compare different FFAG systems
◆ Linear non-scaling FFAGs are having problems with large

amplitude particles. Know how to address, additional costs.
◆ Isochronous FFAGs have serious dynamic aperture problems,

but more work may address this.
◆ Scaling FFAGs look costly, but optimization seems to be helping

that. RF may be an issue.

● We have and are continuing to develop a good experimental plan
and design for a model to study linear non-scaling FFAGs

● We have significant international collaboration in this effort
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